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The operator function (A, B) → T r f (A, B)(K ∗)K , defined in pairs of bounded self-
adjoint operators in the domain of a function f of two real variables, is convex for every
Hilbert Schmidt operator K , if and only if f is operator convex. We obtain, as a special
case, a new proof of Lieb’s concavity theorem for the function (A, B) → T r Ap K ∗ Bq K ,

where p and q are non-negative numbers with sum p + q ≤ 1. In addition, we prove
concavity of the operator function

(A, B) → T r

[
A

A + µ1
K ∗ B

B + µ2
K

]

in its natural domain D2(µ1, µ2), cf. Definition 3.

KEY WORDS: Lieb’s concavity theorem, operator convex function, generalized
Hessian.

1. INTRODUCTION

Let f : D → R be a function of two variables defined in a set D ⊆ R2, and let
Mn×m denote the set of complex n × m matrices (with the abbreviation Mn for
Mn×n). We say that two Hermitian matrices (A, B) ∈ Mn × Mm are in the domain
of f, if the product σ (A) × σ (B) of the spectra is included in D. We shall consider
two different but related notions of matrix functions associated with f.

1.1. The Functional Calculus

Following Korányi(16) we introduce the functional calculus

f (A, B) =
p∑

i=1

q∑
j=1

f (λi , µ j )Pi ⊗ Q j (1)
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for functions f of two variables, where

A =
p∑

i=1

λi Pi and B =
q∑

j=1

µ j Q j (2)

are the spectral decompositions of A and B. If f can be written as a product
f (t, s) = g(t)h(s) of two functions each depending only on one variable then
f (A, B) = g(A) ⊗ h(B). We say that f is matrix convex of order (n, m), if D is
convex and

f (λA + (1 − λ)B, λC + (1 − λ)D) ≤ λ f (A, C) + (1 − λ) f (B, D)

for all pairs of Hermitian matrices (A, C), (B, D) ∈ Mn × Mm in the domain of
f and λ ∈ [0, 1]. Note that (λA + (1 − λ)B, λC + (1 − λ)D) automatically is in
the domain of f.

This type of functional calculus may for continuous functions be extended to
bounded, linear and self-adjoint operators on a Hilbert space by replacing sums
with integrals, hence

f (A, B) =
∫

f (λ,µ) d E A(λ) ⊗ d EB(µ), (3)

where E A ⊗ EB is the product measure constructed from the two spectral measures
E A and EB . It is well-defined on products of Borel sets in R since E A ⊗ 1 and
1 ⊗ EB commute, and it may be extended to Borel sets in R2. The support of the
measure is contained in σ (A) × σ (B).

The function f is said to be operator convex, if D is convex and the operator
function (A, B) → f (A, B) is convex in pairs of operators in the domain of f. It is
not difficult to establish that f is operator convex, if an only if it is matrix convex
of all orders. The proof follows a suggestion by Löwner (for operator monotone
functions) as reported by Bendat and Sherman(3) (Lemma 2.2) and can easily be
adapted to the present situation. Note finally that this type of functional calculus
may be generalized to functions of k variables, together with the notion of operator
convexity or matrix convexity of a fixed order (n1, . . . , nk).

1.2. The Variant Functional Calculus

We may also define an endomorphism K → f (A, B)(K ) of Mn×m by setting

f (A, B)(K ) =
p∑

i=1

q∑
j=1

f (λi , µ j )Pi K Q j (4)

for each K ∈ Mn×m . If f can be written as a product f (t, s) = g(t)h(s) of two
functions each depending only on one variable then f (A, B)(K ) = g(A)K h(B).
This type of functional calculus is difficult to extend to bounded linear operators
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on a Hilbert space H, since there is no obvious way of constructing a measure on
H from the two spectral measures E A and EB . These questions “were extensively
investigated by Birman and Solomyak(5,6) within the very general scope of their
theory of double operator integrals,” and it is only possible to extend the type
of functional calculus in (4) to bounded linear operators for a special class of
functions, cf. also Ref. 15. The variant functional calculus is in the literature
sometimes expressed in terms of “super operators” acting on Mn×m by setting

f (A, B)(K ) = f (L A, RB)K ,

where L A and RB are commuting left and right multiplication operators (by A
and B).

1.3. Convexity Statements

The two types of functional calculus are connected by the following construc-
tion. Let H1 and H2 be Hilbert spaces of finite dimensions n1 and n2 equipped
with fixed orthonormal bases (e1

1, . . . , e1
n1

) and (e2
1, . . . , e2

n2
). Let furthermore

{ei j }i=1,...,n1; j=1,...,n2

be the system of matrix units in B(H2, H1) such that

ei j e
2
m = δ jme1

i j, m = 1, . . . , n2; i = 1, . . . , n1.

Let H̄2 denote the Hilbert space conjugate2 to H2 and consider the linear bijection
�: H1 ⊗ H̄2 → B(H2, H1) such that

�
(
e1

i ⊗ e2
j

) = ei j i = 1, . . . , n1; j = 1, . . . , n2.

It is not difficult to establish that � is unitary and that

�( f (A, B)ϕ) = f (A, B)(�(ϕ)), (5)

hence

( f (A, B)ϕ | ϕ)H1⊗H̄2
= T r ( f (A, B)(�(ϕ))�(ϕ)∗) (6)

for self-adjoint operators (A, B) in the domain of f such that A is acting on H1

and B is acting on H2, and every vector ϕ ∈ H1 ⊗ H̄2. We consequently obtain:

Theorem 1.1 Let f : D → R be a function defined in a convex set D ⊆ R2. The
matrix function

(A, B) → T r f (A, B)(K ∗)K ,

2 This means that H2 and H̄2 are identical as complex vector spaces, but the inner products are conjugate
to each other.
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defined in pairs of Hermitian matrices (A, B) ∈ Mn × Mm in the domain of f,
is convex for all matrices K ∈ Mm×n if and only if f is matrix convex of order
(n, m).

Lieb’s concavity theorem states that the mapping

(A, B) → T r Ap K ∗ Bq K ,

defined in pairs of positive definite operators, is concave for arbitrary Hilbert
Schmidt operators K and non-negative exponents p and q with p + q ≤ 1. Let us
therefore, for these exponents, consider the function f (t, s) = t psq defined in the
first quadrant. Since

T r f (A, B)(K ∗)K = T r Ap K ∗ Bq K

we realize by Theorem 1.1 that Lieb’s concavity theorem is a reflection of the
operator concavity of the function f. But Theorem 1.1 also sets the scope for the
largest possible extension of Lieb’s theorem, not only for operators but for each
class of matrices. These distinctions are significant because of the richness of the
class of matrix convex functions. In a forthcoming paper(14) we show that there
to any interval I different from the real line and to each natural number n exist a
function in I which is matrix convex of order n, but not matrix convex of order
n + 1.

2. SOME OPERATOR CONCAVE FUNCTIONS

In this section we study some well-known operator concave functions with
the aim to give truly elementary or otherwise illuminating proofs. The basic tool
is the geometric mean # for positive operators A and B introduced by Pusz and
Woronowicz.(2,17,23) It is increasing, concave and given by

A # B = A1/2(A−1/2 B A−1/2)1/2 A1/2,

if A is invertible. Note that A # B = (AB)1/2 if A and B commute. The geometric
mean A # B may be characterized as the maximum of all self-adjoint C such that
the block matrix (

A C
C B

)

is positive semi-definite. Adapting the reasoning in Ref. 2 (Corollary 2.2) we
obtain:

Proposition 2.1. Let f and g be non-negative operator concave functions of k
variables defined in some convex domain D in Rk . The function

F(t1, . . . , tk) = f (t1, . . . , tk)1/2g(t1, . . . , tk)1/2

is then also operator concave in the domain D.
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Proof: We consider k-tuples (A1, . . . , Ak) and (B1, . . . , Bk) of self-adjoint op-
erators in the domain D and note that

F(A1, . . . , Ak) = f (A1, . . . , Ak) # g(A1, . . . , Ak).

The statement now follows from the calculation

F

(
A1 + B1

2
, . . . ,

Ak + Bk

2

)

= f

(
A1 + B1

2
, · · · , Ak + Bk

2

)
# g

(
A1 + B1

2
, . . . ,

Ak + Bk

2

)

≥ f (A1, . . . , Ak) + f (B1, . . . , Bk)

2
#

g(A1, . . . , Ak) + g(B1, . . . , Bk)

2

≥ f (A1, . . . , Ak) # g(A1, · · · , Ak)

2
+ f (B1, . . . , Bk) # g(B1, · · · , Bk)

2

= F(A1, . . . , Ak) + F(B1, · · · , Bk)

2
,

where we used the concavity of f and g and monotonicity of the geometric mean
in the first inequality, and the concavity of the geometric mean in the second. �

Note that the above proposition may be formulated also for classes of matrix
concave functions of a fixed order (n1, . . . , nk).

Corollary 2.2 The functions (t1, . . . , tk) → t p1

1 · · · t pk

k are operator concave in
Rk

+ for non-negative exponents p1, . . . , pk with sum p1 + · · · + pk ≤ 1.

Proof: Consider the simplex S = {(p1, . . . , pk) | pi ≥ 0, p1 + · · · + pk ≤ 1}
and the set of exponents

E = {
(p1, . . . , pk) ∈ S | t p1

1 · · · t pk

k is operator concave in Rk
+
}
.

The vertices (0, 0, . . . , 0) and (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) of the
convex polytope S are in E, hence S = conv(E). Since E is closed and mid-point
convex by Proposition 2.1, we therefore obtain E = S. �

This gives for k = 1 the operator concavity in the positive half-axis of the
function t → t p for 0 ≤ p ≤ 1. For k = 2 we obtain concavity in the first quad-
rant of the function (t, s) → t psq for non-negative exponents with sum p + q ≤ 1.

This is essentially Lieb’s concavity theorem, cf. also Ando(2) (Corollary 6.2) who
gave a different proof. The method of considering convex sets of exponents to
prove concavity of the map A → Ap ⊗ Aq appeared in the unpublished notes (1,



92 Hansen

Theorem IV.3) by Ando. The same technique also appeared in a study of oper-
ator monotone functions,(22) and very recently in a study of Morozova-Chentsov
functions.(12) (Remark 2.4).

3. NEW OPERATOR CONCAVE FUNCTIONS

Let us henceforth consider the functions

f (t1, . . . , tk) = t1
t1 + µ1

· · · tk
tk + µk

t1, . . . , tk > 0, (7)

where µ1, . . . , µk > 0.

Definition 3.1. We define the domain Dk(µ1, . . . , µk) ⊂ Rk
+ (abbreviated

Dk when there is no confusion) as the set of k-tuples (t1, . . . , tk) ∈ Rk
+ such that

the matrix

Ak(t1, . . . , tk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2t1
µ1

−1 · · · −1

−1
2t2
µ2

· · · −1

...
...

. . .
...

−1 −1 · · · 2tk
µk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

is positive semi-definite.
It readily follows from the above definition that Dk is a closed convex set,

and that (ct1, . . . , ctk) ∈ Dk for (t1, . . . , tk) ∈ Dk and c ≥ 1.

Proposition 3.2 The function f defined in (7) is concave in the convex domain
Dk . Furthermore, any open convex set in Rk

+ in which f is concave is already
contained in Dk .

Proof: The Hessian matrix H f (t1, . . . , tk) of f is given by

f (t1, . . . , tk)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2µ1

t1(t1 + µ1)2

µ1µ2

t1t2(t1 + µ1)(t2 + µ2)
· · ·

µ2µ1

t2t1(t2 + µ2)(t1 + µ1)

−2µ2

t2(t2 + µ2)2
· · ·

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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If we introduce the manifestly positive semi-definite matrix

P(t1, . . . , tk) = f (t1, . . . , tk)

(
µiµ j

ti t j (ti + µi )(t j + µ j )

)k

i, j=1

then the Hessian can be written as the Hadamard product

H f (t1, . . . , tk) = −Ak(t1, . . . , tk) ◦ P(t1, . . . , tk),

and since a Hadamard product is a principal submatrix of the tensor product, it
follows that H f (t1, . . . , tk) is negative semi-definite in the domain Dk . It hence
follows that f is concave in Dk . Even though P(t1, . . . , tk) is a rank one operator
it has a Hadamard inverse

P◦−1(t1, . . . , tk) = 1

f (t1, . . . , tk)

(
ti t j (ti + µi )(t j + µ j )

µiµ j

)k

i, j=1

,

which is manifestly positive semi-definite in every point (t1, . . . , tk) ∈ Rk
+, thus

Ak(t1, . . . , tk) = −H f (t1, . . . , tk) ◦ P◦−1(t1, . . . , tk).

If the Hessian were negative semi-definite in a point (t1, . . . , tk) ∈ Rk
+ outside of

Dk it would then follow that also Ak(t1, . . . , tk) is positive semi-definite, and this
contradicts the definition of Dk . Therefore f is not concave in any open convex
set outside of Dk . �

We have shown that the function f defined in (7) is concave in the domain
Dk and nowhere concave outside of this domain. We will prove that f is in fact
also operator concave in Dk, but first we need some preliminaries.

3.1. Generalized Hessian Matrices

Matrix or operator convexity of a function of one or several variables may be
inferred by calculating the so called generalized Hessian matrices.(9) The theory
is based on the structure theorem3 for the second Fréchet differential of the
corresponding matrix function.

Let f : D → R be a continuous function defined in an open set D ⊆ Rk .

We say that a k-tuple of bounded self-adjoint operators (x1, . . . , xk) acting on
Hilbert spaces H1, . . . , Hk is contained in the domain of f, if the product of the
spectra σ (x1) × · · · × σ (xk) is contained in D. We may then proceed as in (3) to
define the bounded self-adjoint operator f (x1, . . . , xk) acting on the tensor product
H1 ⊗ · · · ⊗ Hk .

3 In the reference we only considered functions defined in a product of open intervals, but the structure
theorem is valid for functions defined in arbitrary open sets in Rk .
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A data set � for f of order (n1, . . . , nk) is a set of points in the domain D
written on the form

� = {(λm1 (1), . . . , λmk (k)) ∈ D | mi = 1, . . . , ni for i = 1, . . . , k}. (9)

It may naturally be constructed from the eigenvalues of a k-tuple of Hermitian
matrices (x1, . . . , xk) of order (n1, . . . , nk) in the domain of f.

Suppose now that f : D → R has continuous partial derivatives up to the
second order. To a data set � for f of order (n1, . . . , nk) as in (9) and a k-tuple of
natural numbers (m1, . . . , mk) such that mi ≤ ni for i = 1, . . . , k, the generalized
Hessian matrix H (m1, . . . , mk) is defined(9) (Definition 3.1) as the block matrix

H (m1, . . . , mk) =

⎛
⎜⎝

H11(m1, . . . , mk) · · · H1k(m1, . . . , mk)
...

. . .
...

Hk1(m1, . . . , mk) · · · Hkk(m1, . . . , mk)

⎞
⎟⎠ ,

where for u �= s the nu × ns matrix

Hus(m1, . . . , mk) =
([λm1 (1)| · · · |λms (s), λ j (s)| · · · |λp(u), λmu (u)| · · · |λmk (k)] f )p, j

while the ns × ns matrix

Hss(m1, . . . , mk) = (2[λm1 (1)| · · · |λms (s), λp(s), λ j (s)| · · · |λmk (k)] f )p, j

for s = 1, . . . , k. The entries are second order partial divided differences of f
(the notation does not imply any particular order of the entries). Note that each
generalized Hessian matrix is a quadratic and real symmetric matrix of order
n1 + · · · + nk .

Theorem 3.3. (The second Fréchet differential) Let f : D → R be a real p >

2 + k/2 times continuously differentiable function defined in an open set D ⊆ Rk .

Then the operator function

(x1, . . . , xn) → f (x1, . . . , xk),

defined in k-tuples (x1, . . . , xk) of bounded self-adjoint operators in the domain
of f, is twice Fréchet differentiable. If this function is restricted to k-tuples of
Hermitian matrices (x1, . . . , xk) of order (n1, . . . , nk) in the domain of f, then the
expectation value of the second Fréchet differential can be written on the form

(d2 f (x)(h, h)ϕ | ϕ)

=
n1∑

m1=1

· · ·
nk∑

mk=1

(H (m1, . . . , mk)�h(m1, . . . , mk) | �h(m1, . . . , mk)),
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where H (m1, . . . , mk) is a generalized Hessian matrix associated with f and the
data set � constructed from the eigenvalues of the matrices (x1, . . . , xk). The
vectors �h(m1, . . . , mk) are given by

�h(m1, . . . , mk) =

⎛
⎜⎝

�h
1(m1, . . . , mk)

...
�h

k (m1, . . . , mk)

⎞
⎟⎠ ,

the k-tuple of Hermitian matrices h = (h1, . . . , hk) is arbitrary but of order
(n1, . . . , nk) and the vectors

�h
s (m1, . . . , mk) js = hs

ms js ϕ(m1, . . . , ms−1, js, ms+1, . . . , mk)

for js = 1, . . . , ns and s = 1, . . . , k, and the tensor

ϕ =
n1∑

m1=1

· · ·
nk∑

mk=1

ϕ(m1, . . . , mk) e1
m1

⊗ · · · ⊗ ek
mk

is expressed in terms of orthonormal bases of eigenvectors (ei
mi

)mi =1,...,ni of each
Hermitian matrix xi in the k-tuple (x1, . . . , xk).

The form of the second Fréchet differential implies(8) (Exercises 3.1.8 and
3.6.4) the following result:

Corollary 3.4 A real p > 2 + k/2 times continuously differentiable function
f : D → R defined in an open convex set D ⊆ Rk is matrix convex of order
(n1, . . . , nk), if to each data set � for f of order (n1, . . . , nk) all of the generalized
Hessian matrices H (m1, . . . , mk) are positive semi-definite.

Theorem 3.5 Let µ1, . . . , µk > 0 be positive real constants. The function

f (t1, . . . , tk) = t1
t1 + µ1

· · · tk
tk + µk

is operator concave in the domain Dk(µ1, . . . , µk).

Proof: It is sufficient to prove that f is matrix concave of arbitrary order
(n1, . . . , nk). For this purpose we consider an arbitrary data set � for f of
order (n1, . . . , nk) written as in (9). The multiplicative form of the function
makes it simple to calculate the generalized Hessian matrices. We introduce the
vectors

a(i) =
(

µi

λ1(i) + µi
, . . . ,

µi

λni (i) + µi

)
∈ Rni
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for i = 1, . . . , k and calculate for u �= s the entries

[λm1 (1)| · · · |λms (s), λ js (s)| · · · |λpu (u), λmu (u)| · · · |λmk (k)] f

= λm1 (1)

λm1 (1) + µ1
· · · µs

(λms (s) + µs)(λ js (s) + µs)
· · ·

· · · µu

(λpu (u) + µu)(λmu (u) + µu)
· · · λmk (k)

λmk (k) + µk

= f (λm1 (1), . . . , λmk (k))

λms (s)λmu (u)
a(u)pu a(s) js

hence the block

Hus(m1, . . . , mk) = f (λm1 (1), . . . , λmk (k))

λms (s)λmu (u)
a(u)t a(s).

Similarly, we calculate the entries in the diagonal blocks

2[λm1 (1)| · · · |λms (s), λps (s), λ js (s)| · · · |λmk (k)] f

= 2λm1 (1)

λm1 (1) + µ1
· · · −µs

(λms (s) + µs)(λps (s) + µs)(λ js (s) + µs)
· · · λmk (k)

λmk (k) + µk

= −2
f (λm1 (1), . . . , λmk (k))

µsλms (s)
a(s)ps a(s) js

hence the block

Hss(m1, . . . , mk) = −2
f (λm1 (1), . . . , λmk (k))

µsλms (s)
a(s)t a(s).

In conclusion, the generalized Hessian matrices H (m1, . . . , mk) associated with
the function (7) and the data set (9) can be written on the form

f (λm1 , . . . , λmk )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2a(1)t a(1)

µ1λm1 (1)

a(1)t a(2)

λm1 (1)λm2 (2)
· · · a(1)t a(k)

λm1 (1)λmk (k)

a(2)t a(1)

λm2 (2)λm1 (1)

−2a(2)t a(2)

µ2λm2 (2)
· · · a(2)t a(k)

λm2 (2)λmk (k)

...
...

. . .
...

a(k)t a(1)

λmk (k)λm1 (1)

a(k)t a(2)

λmk (k)λm2 (2)
· · · −2a(k)t a(k)

µkλmk (k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where a(i)t denotes the transpose of a(i). It can be written as the Hadamard
product of the manifestly positive semi-definite block matrix

f (λm1 , . . . , λmk )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(1)t a(1)

λm1 (1)2

a(1)t a(2)

λm1 (1)λm2 (2)
· · · a(1)t a(k)

λm1 (1)λmk (k)

a(2)t a(1)

λm2 (2)λm1 (1)

a(2)t a(2)

λm2 (2)2
· · · a(2)t a(k)

λm2 (2)λmk (k)

...
...

. . .
...

a(k)t a(1)

λmk (k)λm1 (1)

a(k)t a(2)

λmk (k)λm2 (2)
· · · a(k)t a(k)

λmk (k)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix −Ak(λm1 (1), . . . , λmk (k)) defined in (8).
All of the generalized Hessian matrices associated with f and � are thus

negative semi-definite, hence it follows from Corollary 3.4 that f is matrix concave
of order (n1, . . . , nk), and since this order is arbitrary, we conclude that f is
operator concave. �

Since the above function f is operator concave in the largest domain in
which it is concave, we realize that the associated generalized Hessian matrices of
a certain order (n1, . . . , nk) are negative semi-definite, if and only if f is matrix
concave of the same order. This is in line with the conjecture (known to be true
for functions of one variable) that positive semi-definiteness of the generalized
Hessian matrices are not only sufficient but also necessary conditions for matrix
convexity.

Corollary 3.6 Let µ1 and µ2 be positive real numbers, and let K be a Hilbert
Schmidt operator. The operator function

(A, B) → T r

[
A

A + µ1
K ∗ B

B + µ2
K

]
,

defined in pairs (A, B) of positive definite operators, is concave in the convex
domain

D2(µ1, µ2) = {(t1, t2) ∈ R2
+ | t1t2 ≥ µ1µ2/4}.

Note that the operator function in the corollary, for non-vanishing K , is not
concave in any open convex set outside of D2(µ1, µ2), not even its restriction to
pairs of positive real numbers.
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APPENDIX

Theorem 4.1 The function

f (t1, . . . , tk) = 1

t1 · · · tk

is operator convex in Rk
+.

Proof: Let � be a data set for f of order (n1, . . . , nk) as in (9) and set

a(i) =
(

1

λ1(i)
, . . . ,

1

λni (i)

)
∈ Rni+ i = 1, . . . , k.

It is easy to calculate the generalized Hessian H (m1, . . . , mk) as

f (λm1, . . . , λmk )

⎛
⎜⎜⎜⎜⎜⎝

2a(1)t a(1) a(1)t a(2) · · · a(1)t a(k)

a(2)t a(1) 2a(2)t a(2) · · · a(2)t a(k)

...
...

. . .
...

a(k)t a(1) a(k)t a(2) · · · 2a(k)t a(k)

⎞
⎟⎟⎟⎟⎟⎠

for any k-tuple (m1, . . . , mk) ≤ (n1, . . . , nk). Since this matrix is manifestly pos-
itive semi-definite the assertion follows from Corollary 3.4. �

The above Theorem is due to Ando(2) (Theorem 5) who gave a very different
proof. For k = 2 the result may be derived from(18) (Corollary 8.1) by using the
identification � introduced in the introduction. The result is fitting since − f is
operator monotone as a function of k variables, cf. (Ref. 11, Page 17).

Corollary 4.2 The function

f (t1, . . . , tk) = 1

t p1

1 · · · t pk

k

is for arbitrary exponents p1, . . . , pk ∈ [0, 1] operator convex in Rk
+.

Lieb proved (18, Corollary 3.1) convexity of the mapping

(A, B, K ) →
∫ ∞

0
T r

[
1

A + u
K ∗ 1

B + u
K

]
du

in B(H )+ × B(H )+ × B(H )HS, cf. also Ref. 21, 24. It is a triviality that the
constituent mappings

(A, B, K ) → T r

[
1

A + u
K ∗ 1

B + u
K

]
u > 0
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are not (jointly) convex in B(H )+ × B(H )+ × B(H )HS. But they are, as noted
above, (jointly) convex in the first two variables.

Proposition 4.3 The mapping (A, ξ ) → (A−1ξ | ξ ) is (jointly) convex for posi-
tive invertible operators A on a Hilbert space H, and vectors ξ ∈ H.

Proof: Ando noted4 (2) (Page 208) that the harmonic mean 2(A−1 + B−1)−1 of
two positive invertible operators A and B on a Hilbert space H can be characterized
as the maximum of all Hermitian operators C for which(

C C
C C

)
≤ 2

(
A 0
0 B

)
. (10)

Replacing A and B with their inverses and inserting the Harmonic mean 2(A +
B)−1 of A−1 and B−1 for C, we obtain the inequality(

(A + B)−1 (A + B)−1

(A + B)−1 (A + B)−1

)
≤

(
A−1 0
0 B−1

)
(11)

which evaluated in block vectors (ξ, η) for ξ, η ∈ H may be written as((
A + B

2

)−1 (
ξ + η

2

)
|
(

ξ + η

2

))
≤ 1

2

(
(A−1ξ | ξ ) + (B−1η | η)

)
.

But this inequality is the desired result. �

The mapping A → A ⊗ B is linear for a fixed B, thus the mapping

(A, ξ ) → ((A−1 ⊗ B−1)ξ | ξ )

is (jointly) convex for positive invertible operators A and B on a Hilbert space H
and vectors ξ ∈ H ⊗ H. By using the unitary map �: H ⊗ H̄ → B(H ) introduced
in the introduction, we obtain:

Proposition 4.4 The mapping

(A, B, K ) → T r

[
1

A + u
K ∗ 1

B + v
K

]
u, v > 0

defined in B(H )+ × B(H )+ × B(H )HS is (jointly) convex in any two of the three
variables.

4 Since Ando offered no proof, we sketch (10) in the case where C is chosen as the harmonic mean. Use
the identity 2(A−1 + B−1) = 2A1/2(1 + A1/2 B−1 A1/2)−1 A1/2 and multiply the inequality from the
left and from the right with a diagonal block matrix with A−1/2 in the diagonal. This transformation
reduces (10) to an inequality between commuting operators.
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The joint convexity in say (A, K ) may also be derived directly from the Lieb-
Ruskai convexity theorem (19, Remark after Theorem 1) stating that the mapping
(A, K ) → K ∗ A−1 K is convex, where A is positive definite and invertible, and K
is arbitrary.

Remark 4.5 Lieb pointed out that Proposition 4.3 may be obtained also as a
direct consequence of the Lieb-Ruskai theorem in the following way: Let Bξ

for an arbitrary vector ξ be defined as the operator Bξ u = (u | v)ξ where v is
a fixed unit vector. The mapping ξ → Bξ is linear, so the composed mapping
(A, ξ ) → B∗

ξ A−1 Bξ is jointly convex. The desired result now follows by taking
the expectation value in the vector v.

Remark 4.6 One may ask for which functions f defined in R+ the mapping

(A, ξ ) → ( f (A)ξ | ξ )

is (jointly) convex. Obviously f has to be operator convex, and it follows imme-
diately from Proposition 4.3 that any function of the form

f (t) = β +
∫ ∞

0

1

t + s
dµ(s) β ∈ R, (12)

where µ is a positive measure with support in [0,∞) such that the integrals∫
(s2 + 1)−1 dµ(s) and

∫
s(s2 + 1)−1 dµ(s) both are finite, has the property. The

functions of the form (12) coincide with the class of operator monotone decreasing
functions defined in the positive half-axis and bounded from below(13) (Page 9).
But not all operator convex functions have the property. If we set f (t) = t2 and
choose the projections

A1 =
(

0 0
0 1

)
and A2 = 1

2

(
1 −1

−1 1

)

together with the vectors ξ1 = (1, 0) and ξ2 = (0,−1), then the difference
(

A2
1ξ1 | ξ1

) + (
A2

2ξ2 | ξ2
)

2
−

((
A1 + A2

2

)2 (
ξ1 + ξ2

2

)
| ξ1 + ξ2

2

)
= − 1

16

is negative, and this remains so if we perturb A1 and A2 slightly such that they
become strictly positive.
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